Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사]
조회: 1513
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]



donaricano-btn



[최초 등록일: ]
[최종 수정일: 12/18/2020

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 쓴 사람
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12590정성태4/9/2021521.NET Framework: 1033. C# - .NET 4.0 이하에서 Console.IsInputRedirected 구현
12589정성태4/8/2021631.NET Framework: 1032. C# - Environment.OSVersion의 문제점 및 윈도우 운영체제의 버전을 구하는 다양한 방법
12588정성태4/7/2021552개발 환경 구성: 565. PowerShell - New-SelfSignedCertificate를 사용해 CA 인증서 생성 및 인증서 서명 방법
12587정성태4/6/2021749개발 환경 구성: 564. Windows 10 - ClickOnce 배포처럼 사용할 수 있는 MSIX 설치 파일
12586정성태4/5/2021553오류 유형: 710. Windows - Restart-Computer / shutdown 명령어 수행 시 Access is denied(E_ACCESSDENIED)
12585정성태4/5/2021477개발 환경 구성: 563. 기본 생성된 kubeconfig 파일의 내용을 새롭게 생성한 인증서로 구성하는 방법
12584정성태4/1/2021565개발 환경 구성: 562. kubeconfig 파일 없이 kubectl 옵션만으로 실행하는 방법
12583정성태3/29/2021608개발 환경 구성: 561. kubectl 수행 시 다른 k8s 클러스터로 접속하는 방법
12582정성태3/29/2021763오류 유형: 709. Visual C++ - 컴파일 에러 error C2059: syntax error: '__stdcall'
12581정성태3/28/2021688.NET Framework: 1031. WinForm/WPF에서 Console 창을 띄워 출력하는 방법 (2) - Output 디버깅 출력을 AllocConsole로 우회 [2]
12580정성태3/28/2021754오류 유형: 708. SQL Server Management Studio - Execution Timeout Expired.
12579정성태3/28/2021608오류 유형: 707. 중첩 가상화(Nested Virtualization) - The virtual machine could not be started because this platform does not support nested virtualization.
12578정성태3/27/2021554개발 환경 구성: 560. Docker Desktop for Windows 기반의 Kubernetes 구성 (2) - WSL 2 인스턴스에 kind가 구성한 k8s 서비스 위치
12577정성태3/26/2021937개발 환경 구성: 559. Docker Desktop for Windows 기반의 Kubernetes 구성 - WSL 2 인스턴스에 kind 도구로 k8s 클러스터 구성
12576정성태3/25/2021665개발 환경 구성: 558. Docker Desktop for Windows에서 DockerDesktopVM 기반의 Kubernetes 구성 (2) - k8s 서비스 위치
12575정성태3/24/2021550개발 환경 구성: 557. Docker Desktop for Windows에서 DockerDesktopVM 기반의 Kubernetes 구성
12574정성태3/23/2021888.NET Framework: 1030. C# Socket의 Close/Shutdown 동작 (동기 모드)
12573정성태3/22/2021725개발 환경 구성: 556. WSL 인스턴스 초기 설정 명령어
12572정성태3/22/2021650.NET Framework: 1029. C# - GC 호출로 인한 메모리 압축(Compaction)을 확인하는 방법파일 다운로드1
12571정성태3/21/2021652오류 유형: 706. WSL 2 기반으로 "Enable Kubernetes" 활성화 시 초기화 실패 [1]
12570정성태3/19/2021644개발 환경 구성: 555. openssl - CA로부터 인증받은 새로운 인증서를 생성하는 방법
12569정성태3/18/2021819개발 환경 구성: 554. WSL 인스턴스 export/import 방법 및 단축 아이콘 설정 방법
12568정성태3/18/2021534오류 유형: 705. C# 빌드 - Couldn't process file ... due to its being in the Internet or Restricted zone or having the mark of the web on the file.
12567정성태3/17/2021595개발 환경 구성: 553. Docker Desktop for Windows를 위한 k8s 대시보드 활성화 [1]
12566정성태3/17/2021670개발 환경 구성: 552. Kubernetes - kube-apiserver와 REST API 통신하는 방법 (Docker Desktop for Windows 환경)
12565정성태3/17/2021463오류 유형: 704. curl.exe 실행 시 dll not found 오류
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...